ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Швецов Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



Задача 66234

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Ортоцентр и ортотреугольник ]
[ Отношения линейных элементов подобных треугольников ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 4-
Классы: 9,10

Высоты AA1, CC1 треугольника ABC пересекаются в точке H.  HA – точка симметричная H относительно A.  HAC1 пересекает прямую BC в точке C'; аналогично определяется точка A'. Докажите, что  A'C' || AC.

Прислать комментарий     Решение

Задача 115977

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

Пусть I – центр вписанной окружности прямоугольного треугольника ABC, касающейся катетов AC и BC в точках B0 и A0 соответственно. Перпендикуляр, опущенный из A0 на прямую AI, и перпендикуляр, опущенный из B0 на прямую BI, пересекаются в точке P. Докажите, что прямые CP и AB перпендикулярны.

Прислать комментарий     Решение

Задача 116746

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства биссектрис, конкуррентность ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC точка I – центр вписанной окружности, точки IA, IC – центры вневписанных окружностей, касающихся сторон BC и AB соответственно. Точка O – центр описанной окружности треугольника IIAIC. Докажите, что  OIAC.

Прислать комментарий     Решение

Задача 116751

Темы:   [ Ортоцентр и ортотреугольник ]
[ Подобие ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 10,11

H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.

Прислать комментарий     Решение

Задача 67345

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9,10,11

Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .