Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 67]
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности ω c центром O фиксированы точки A и C. Точка B движется по дуге AC. Точка P – фиксированная точка хорды AC. Прямая, проходящая через P параллельно AO, пересекает прямую BA в точке A1; прямая, проходящая через P параллельно CO, пересекает прямую BC в точке C1. Докажите, что центр описанной окружности треугольника A1BC1 движется по прямой.
На стороне AC треугольника ABC произвольно выбрана точка D. Касательная, проведённая в точке D к описанной окружности треугольника BDC, пересекает сторону AB в точке C1; аналогично определяется точка A1. Докажите, что A1C1 || AC.
На гипотенузе AC прямоугольного треугольника ABC отметили точку такую C1, что BC = CC1. Затем на катете AB отметили такую точку C2, что
AC2 = AC1; аналогично определяется точка A2. Найдите угол AMC, где M – середина отрезка A2C2.
Пусть BM – медиана прямоугольного треугольника ABC (∠B = 90°). Окружность, вписанная в треугольник ABM, касается сторон AB, AM в точках A1, A2; аналогично определяются точки C1, C2. Докажите, что прямые A1A2 и C1C2 пересекаются на биссектрисе угла ABC.
На стороне BC равностороннего треугольника ABC взяты такие точки M и N (M лежит между B и N) , что ∠MAN = 30°. Описанные окружности треугольников AMC и ANB пересекаются в точке K. Докажите, что прямая AK содержит центр описанной окружности треугольника AMN.
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 67]