ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Швецов Д.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



Задача 64462

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9,10

Пусть BD – биссектриса треугольника ABC. Точки Ia, Ic – центры вписанных окружностей треугольников ABD, CBD. Прямая IaIc пересекает прямую AC в точке Q. Докажите, что  ∠DBQ = 90°.

Прислать комментарий     Решение

Задача 64465

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Радикальная ось ]
Сложность: 4
Классы: 8,9,10

Вписанная окружность треугольника ABC касается стороны AB в точке C'. Вписанная окружность треугольника ACC' касается сторон AB и AC в точках C1, B1; Вписанная окружность треугольника BCC', касается сторон AB и BC в точках C2, A2. Докажите, что прямые B1C1, A2C2 и CC' пересекаются в одной точке.

Прислать комментарий     Решение

Задача 64469

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 9,10,11

Точки M, N – середины диагоналей AC, BD прямоугольной трапеции ABCD  (∠A = ∠D = 90°).  Описанные окружности треугольников ABN, CDM пересекают прямую BC в точках Q, R. Докажите, что точки Q, R равноудалены от середины отрезка MN.

Прислать комментарий     Решение

Задача 66930

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Угол между касательной и хордой ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 8,9,10,11

Биссектрисы $AA_1, BB_1, CC_1$ треугольника $ABC$ пересекаются в точке $I$. Серединный перпендикуляр к отрезку $BB_1$ пересекает прямые $AA_1$, $CC_1$ в точках $A_0$, $C_0$. Докажите, что описанные окружности треугольников $A_0IC_0$ и $ABC$ касаются.
Прислать комментарий     Решение


Задача 116904

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9,10

Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .