Страница:
<< 1 2 3 4 5 6 [Всего задач: 28]
Дана окружность и хорда AB, отличная от диаметра. По большей дуге
AB движется точка C. Окружность, проходящая через точки A, C и точку H пересечения высот треугольника ABC, повторно пересекает прямую BC в точке P. Докажите, что прямая PH проходит через фиксированную точку, не зависящую от положения точки C.
|
|
Сложность: 5 Классы: 10,11
|
Пусть AA1, BB1 и
CC1 – высоты неравнобедренного остроугольного
треугольника ABC; описанные окружности треугольников ABC и
A1B1C, вторично
пересекаются в точке P, Z – точка пересечения касательных к описанной окружности треугольника ABC, проведённых в точках A и B. Докажите, что прямые AP, BC и ZC1 пересекаются в одной точке.
|
|
Сложность: 5 Классы: 10,11
|
К двум окружностям w1 и w2, пересекающимся в точках A и B, проведена их
общая касательная CD (C и D – точки касания соответственно, точка B ближе к прямой CD, чем A). Прямая, проходящая через A,
вторично пересекает w1 и w2 в точках и L соответственно
(A лежит между K и L ). Прямые KC и LD пересекаются в точке P.
Докажите, что
PB – симедиана треугольника KPL (прямая, симметричная медиане относительно
биссектрисы).
Страница:
<< 1 2 3 4 5 6 [Всего задач: 28]