ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Блинков Ю.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 116158

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 3+
Классы: 8,9

Пусть AA1 и BB1 – высоты неравнобедренного остроугольного треугольника AB, M – середина AB. Описанные окружности треугольников AMA1 и BMB1, пересекают прямые AC и BC в точках K и L соответственно. Докажите, что K, M и L лежат на одной прямой.

Прислать комментарий     Решение

Задача 65232

Темы:   [ Трапеции (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 10,11

O – точка пересечения диагоналей трапеции ABCD. Прямая, проходящая через C и точку, симметричную B относительно O, пересекает основание AD в точке K. Докажите, что  SAOK = SAOB + SDOK.

Прислать комментарий     Решение

Задача 66137

Темы:   [ Средняя линия трапеции ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Точки M и N – середины сторон AB и CD соответственно четырёхугольника ABCD. Известно, что  BC || AD  и  AN = CM.
Верно ли, что ABCD – параллелограмм?

Прислать комментарий     Решение

Задача 66142

Темы:   [ Пирамида (прочее) ]
[ Перпендикулярные плоскости ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию?

Прислать комментарий     Решение

Задача 116750

Темы:   [ Пятиугольники ]
[ Перегруппировка площадей ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь трапеции ]
[ Теорема косинусов ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

В выпуклом пятиугольнике ABCDE:  ∠A = ∠C = 90°,  AB = AEBC = CDAC = 1.  Найдите площадь пятиугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .