ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||
Страница: << 1 2 [Всего задач: 8]
На сторонах AB и BC треугольника ABC как на гипотенузах построены вне его прямоугольные треугольники APB и BQC с одинаковыми углами величины φ при их общей вершине B. Найдите углы треугольника PQK, где K – середина стороны AC.
На сторонах треугольника ABC во внешнюю сторону построены
подобные между собой треугольники ADB, BEC и CFA
( 1) середины отрезков AC, DC, BC и EF — вершины параллелограмма;
2) у этого параллелограмма два угла равны
Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M (MB < MA,
Страница: << 1 2 [Всего задач: 8] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |