ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Купцов Л.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 8]      



Задача 53366

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вспомогательные равные треугольники ]
Сложность: 4+
Классы: 8,9

Автор: Купцов Л.

На сторонах AB и BC треугольника ABC как на гипотенузах построены вне его прямоугольные треугольники APB и BQC с одинаковыми углами величины φ при их общей вершине B. Найдите углы треугольника PQK, где K – середина стороны AC.

Прислать комментарий     Решение

Задача 55377

Темы:   [ Разложение вектора по двум неколлинеарным векторам ]
[ Признаки и свойства параллелограмма ]
[ Поворот помогает решить задачу ]
Сложность: 4+
Классы: 8,9

Автор: Купцов Л.

На сторонах треугольника ABC во внешнюю сторону построены подобные между собой треугольники ADB, BEC и CFA ($ {\frac{AD}{DB}}$ = $ {\frac{BE}{EC}}$ = $ {\frac{CF}{FA}}$ = k; $ \angle$ADB = $ \angle$BEC = $ \angle$CFA = $ \alpha$). Докажите, что:

1) середины отрезков AC, DC, BC и EF — вершины параллелограмма;

2) у этого параллелограмма два угла равны $ \alpha$, а отношение сторон равно k.

Прислать комментарий     Решение


Задача 108196

Темы:   [ Гомотетия помогает решить задачу ]
[ Три точки, лежащие на одной прямой ]
[ Признаки и свойства касательной ]
[ Вписанный угол, опирающийся на диаметр ]
[ Две касательные, проведенные из одной точки ]
Сложность: 5
Классы: 9,10,11

Автор: Купцов Л.

Даны полуокружность с диаметром AB и центром O и прямая, пересекающая полуокружность в точках C и D, а прямую AB – в точке M  (MB < MA,
MD < MC
).  Пусть K – отличная от O точка пересечения описанных окружностей треугольников AOC и DOB. Докажите, что угол MKO – прямой.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .