Страница:
<< 1 2
3 >> [Всего задач: 12]
В остроугольном треугольнике ABC, в котором ∠A = 45°, проведены высоты AA1, BB1, CC1. Биссектриса угла BAA1 пересекает прямую B1A1 в точке D, а биссектриса угла CAA1 пересекает прямую C1A1 в точке E. Найдите угол между прямыми BD и CE.
|
|
Сложность: 4 Классы: 8,9,10
|
В остроугольном неравнобедренном треугольнике ABC проведена высота AH. На сторонах AC и AB отмечены точки B1 и C1 соответственно, так, что HA – биссектриса угла B1HC1 и четырёхугольник BC1B1C – вписанный. Докажите, что
B1 и C1 – основания высот треугольника ABC.
|
|
Сложность: 4 Классы: 9,10,11
|
В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку.
|
|
Сложность: 4 Классы: 8,9,10
|
Четырёхугольник ABCD вписан в окружность ω с центром O, M1 и M2 – середины сторон AB и CD соответственно; Ω – описанная окружность треугольника OM1M2, X1 и X2 – точки пересечения ω с Ω, а Y1 и Y2 – вторые точки пересечения описанных окружностей ω1 и ω2 треугольников CDM1 и ABM2 соответственно с Ω. Докажите, что X1X2 || Y1Y2.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На сторонах AB, AC треугольника ABC взяли такие точки C1, B1 соответственно, что BB1 ⊥ CC1. Точка X внутри треугольника такова, что
∠XBC = ∠B1BA, ∠XCB = ∠C1CA. Докажите, что ∠B1XC1 = 90° – ∠A.
Страница:
<< 1 2
3 >> [Всего задач: 12]