Страница: 1
2 >> [Всего задач: 6]
На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно.
Докажите, что если AK = BK, то AN = 2KM.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть P(x) – квадратный трёхчлен с неотрицательными
коэффициентами.
Докажите, что для любых действительных чисел x и y
справедливо неравенство (P(xy))² ≤ P(x²)P(y²).
|
|
Сложность: 4 Классы: 8,9,10
|
На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.
|
|
Сложность: 5- Классы: 9,10,11
|
Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого
действительны и также принадлежат M?
Страница: 1
2 >> [Всего задач: 6]