ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Малинникова Е.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 2 >> [Всего задач: 6]      



Задача 108231

Темы:   [ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 8,9

На стороне AC остроугольного треугольника ABC выбрана точка D. Медиана AM пересекает высоту CH и отрезок BD в точках N и K соответственно.
Докажите, что если  AK = BK,  то  AN = 2KM.

Прислать комментарий     Решение

Задача 109536

Темы:   [ Обход графов ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9,10,11

В стране 1993 города, и из каждого выходит не менее 93 дорог. Известно, что из каждого города можно проехать по дорогам в любой другой.
Докажите, что это можно сделать не более, чем с 62 пересадками. (Дорога соединяет между собой два города.)

Прислать комментарий     Решение

Задача 109653

Темы:   [ Классические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Пусть P(x) – квадратный трёхчлен с неотрицательными коэффициентами.
Докажите, что для любых действительных чисел x и y справедливо неравенство  (P(xy))² ≤ P(x²)P(y²).

Прислать комментарий     Решение

Задача 109930

Темы:   [ Процессы и операции ]
[ Подсчет двумя способами ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4
Классы: 8,9,10

На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.

Прислать комментарий     Решение

Задача 109621

Темы:   [ Свойства коэффициентов многочлена ]
[ Теорема Виета ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое конечное множество M ненулевых действительных чисел, что для любого натурального n найдется многочлен степени не меньше n с коэффициентами из множества M, все корни которого действительны и также принадлежат M?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .