Страница: 1
2 >> [Всего задач: 8]
|
|
Сложность: 3 Классы: 9,10,11
|
Про четыре целых числа $a,b,c,d$ известно, что
$$
a+b+c+d=ab+bc+cd+da+1.
$$
Докажите, что модули каких-то двух из этих чисел отличаются на один.
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
Действительные числа $a$, $b$, $c$, $d$ таковы, что
$$\frac{a}{b} + \frac{b}{a} = \frac{c}{d} + \frac{d}{c}.$$
Докажите, что произведение каких-то двух чисел из $a$, $b$, $c$, $d$ равно произведению двух других.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан выпуклый четырёхугольник ABCD с попарно непараллельными сторонами. На стороне AD выбирается произвольная точка P, отличная от A и D. Описанные окружности треугольников ABP и CDP вторично пересекаются в
точке Q. Докажите, что прямая PQ проходит через фиксированную точку, не зависящую от выбора точки P.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На описанной окружности треугольника $ABC$ отметили середины дуг $BAC$ и $CBA$ – точки $M$ и $N$ соответственно, и середины дуг $BC$ и $AC$ – точки $P$ и $Q$ соответственно. Окружность $\omega_1$ касается стороны $BC$ в точке $A_1$ и продолжений сторон $AC$ и $AB$. Окружность $\omega_2$ касается стороны $AC$ в точке $B_1$ и продолжений сторон $BA$ и $BC$. Оказалось, что $A_1$ лежит на отрезке $NP$. Докажите, что $B_1$ лежит на отрезке $MQ$.
Страница: 1
2 >> [Всего задач: 8]