Страница: 1 [Всего задач: 4]
|
|
Сложность: 3 Классы: 8,9,10
|
Существуют ли такие три попарно различных натуральных числа
a,
b и
c, что числа
a + b + c и
a ·
b ·
c являются квадратами некоторых натуральных чисел?
|
|
Сложность: 3 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ медиана $CM$ и высота $AH$ пересекаются в точке $O$. Вне треугольника отмечена точка $D$ так, что $AOCD$ – параллелограмм. Чему равно $BD$, если известно, что $MO=a$, $OC=b$?
|
|
Сложность: 3+ Классы: 9,10,11
|
Клетки бумажного квадрата $8 \times 8$ раскрашены в два цвета. Докажите, что Арсений может вырезать из него по линиям сетки два квадрата $2 \times 2$, не имеющих общих клеток, раскраски которых совпадают. (Раскраски, отличающиеся поворотом, считаются разными.)
|
|
Сложность: 3+ Классы: 8,9,10
|
Про трапецию ABCD с основаниями AD и BC известно,
что AB = BD. Пусть точка M – середина боковой стороны
CD, а O – точка пересечения отрезков AC и BM. Докажите,
что треугольник BOC – равнобедренный.
Страница: 1 [Всего задач: 4]