Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 90]
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли такое натуральное n, что для любых ненулевых цифр a и b число anb делится на ab ? (Через x...y обозначено число, получаемое приписыванием друг к другу десятичных записей чисел x, ..., y.)
|
|
Сложность: 3+ Классы: 9,10,11
|
Целые числа a, x1, x2, ...,
x13 таковы, что a = (1 + x1)(1 + x2)...(1 + x13) = (1 – x1)(1 – x2)...(1 – x13). Докажите, что ax1x2...x13 = 0.
|
|
Сложность: 3+ Классы: 9,10,11
|
Назовём натуральное число почти квадратом, если оно равно произведению двух последовательных натуральных чисел.
Докажите, что каждый почти квадрат можно представить в виде частного двух почти квадратов.
Докажите, что произведение всех целых чисел от 21917 + 1 до 21991 – 1 включительно не есть квадрат целого числа.
Докажите, что число 40...09 – не полный квадрат (при любом числе нулей, начиная с 1).
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 90]