Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 90]
|
|
Сложность: 3+ Классы: 10,11
|
Сумма положительных чисел a, b, c равна π/2.
Докажите, что cos a + cos b + cos c > sin a + sin b + sin c.
|
|
Сложность: 3+ Классы: 9,10,11
|
Для вещественных x > y > 0 и натуральных n > k докажите неравенство (xk – yk)n < (xn – yn)k.
|
|
Сложность: 3+ Классы: 7,8,9
|
Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b).
Для натурального n > 3 будем обозначать через n? (n-вопросиал) произведение всех простых чисел, меньших n. Решите уравнение n? = 2n + 16.
|
|
Сложность: 3+ Классы: 8,9,10
|
Натуральные числа a, b и c, где c ≥ 2, таковы, что 1/a + 1/b = 1/c. Докажите, что хотя бы одно из чисел a + c, b + c – составное.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 90]