ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Через вершины A и B треугольника ABC проведены две параллельные прямые, а прямые m и n симметричны им относительно биссектрис соответствующих углов. Докажите, что точка пересечения прямых m и n лежит на описанной окружности треугольника ABC. ![]() ![]() Пусть H — точка пересечения высот треугольника ABC, а AA' — диаметр его описанной окружности. Докажите, что отрезок A'H делит сторону BC пополам. ![]() ![]() ![]() а) Из точки A проведены прямые, касающиеся окружности S в точках B и C. Докажите, что центр вписанной окружности треугольника ABC и центр его вневписанной окружности, касающейся стороны BC, лежат на окружности S. б) Докажите, что окружность, проходящая через вершины B и C любого треугольника ABC и центр O его вписанной окружности, высекает на прямых AB и AC равные хорды. ![]() ![]() |
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1956]
Докажите, что расстояние от точки O до стороны AB равно половине длины стороны CD.
Докажите, что прямая, проведенная из точки P перпендикулярно BC, делит сторону AD пополам.
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 1956] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |