ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Можно ли разбить множество целых чисел на три подмножества так, чтобы для любого целого значения n числа n, n - 50, n + 1987 принадлежали трём разным подмножествам? ![]() ![]() Существует ли степень двойки, из которой перестановкой цифр можно получить другую степень двойки? ![]() ![]() ![]() В некотором городе разрешаются только парные обмены квартир (если две семьи
обмениваются квартирами, то в тот же день они не имеют права участвовать в
другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня. ![]() ![]() |
Страница: 1 2 3 >> [Всего задач: 11]
Существуют ли такие 100 треугольников, ни один из которых нельзя покрыть 99 остальными?
Через n!! обозначается произведение n(n – 2)(n – 4)... до единицы (или до двойки): например, 8!! = 8·6·4·2; 9!! = 9·7·5·3·1.
На плоскости даны прямая l и две точки A и B по одну сторону от неё. На прямой l выбраны точка M, сумма расстояний от которой до точек A и B наименьшая, и точка N, для которой AN = BN. Докажите, что точки A, B, M, N лежат на одной окружности.
В классе организуется турнир по перетягиванию каната. В турнире ровно по одному разу должны участвовать всевозможные команды, которые можно составить из учащихся этого класса (кроме команды всего класса). Доказать, что каждая команда учащихся будет соревноваться с командой всех остальных учащихся класса.
Страница: 1 2 3 >> [Всего задач: 11] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |