Страница: 1
2 >> [Всего задач: 8]
Пешеход шёл 3,5 часа, причём за каждый промежуток времени в один час он
проходил ровно 5 км.
Следует ли из этого, что его средняя скорость за всё время равна 5 км/час?
В Колиной коллекции есть четыре царские золотые пятирублевые монеты. Коле сказали, что какие-то две из них фальшивые. Коля хочет проверить (доказать или опровергнуть), что среди монет есть ровно две фальшивые. Удастся ли ему это сделать с помощью двух взвешиваний на чашечных весах без гирь? (Фальшивые монеты одинаковы по весу, настоящие тоже одинаковы по весу, но фальшивые легче настоящих.)
[Обмены квартир]
|
|
Сложность: 3+ Классы: 8,9,10
|
В некотором городе разрешаются только парные обмены квартир (если две семьи
обмениваются квартирами, то в тот же день они не имеют права участвовать в
другом обмене). Докажите, что любой сложный обмен квартирами можно осуществить за два дня.
(Предполагается, что при любых обменах каждая семья как до, так и после обмена занимает одну квартиру, и что семьи при этом сохраняются).
|
|
Сложность: 4- Классы: 8,9,10
|
а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.
б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?
|
|
Сложность: 4- Классы: 7,8,9
|
Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?
Страница: 1
2 >> [Всего задач: 8]