ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Все углы треугольника ABC меньше  120o. Докажите, что внутри его существует точка, из которой все стороны треугольника видны под углом  120o.


   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 66040

Темы:   [ Дискретное распределение ]
[ Средние величины ]
Сложность: 3+
Классы: 8,9

В торговом центре три автомата продают кофе. В течение дня первый автомат ломается с вероятностью 0,4, второй – с вероятностью 0,3. Каждый вечер приходит механик Иванов и чинит все сломанные автоматы. Однажды Иванов написал в отчете, что математическое ожидание поломок в неделю равно 12. Докажите, что Иванов преувеличивает.

Прислать комментарий     Решение

Задача 66041

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 9,10

Когда Рассеянному Учёному приходит в голову гениальная идея, он записывает её на листке бумаги, но тут же понимает, что идея не гениальная, комкает лист и кидает под стол, где стоят две мусорные корзины. Учёный промахивается мимо первой корзины с вероятностью  p > 0,5,  и с такой же вероятностью он промахивается мимо второй. За утро Учёный бросил под стол пять скомканных гениальных идей. Найдите вероятность того, что в каждой корзине оказалось хотя бы по одной из утренних идей.

Прислать комментарий     Решение

Задача 66045

Темы:   [ Парадоксы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7,8,9,10

  В школьном совете выбирают председателя. Кандидатов четверо: А, Б, В и Г. Предложена специальная процедура – каждый член совета должен записать на специальном листке кандидатов в порядке своих предпочтений. Например, АВГБ значит, что член совета на первое место ставит А, не очень возражает против В и считает, что он лучше, чем Г, зато меньше всего хотел бы видеть председателем Б. Первое место даёт кандидату 3 очка, второе – 2 очка, третье – 1 очко, а четвёртое – 0 очков. После сбора всех листков избирательная комиссия суммирует очки у каждого кандидата. Победит тот, у кого наибольшая сумма очков.
  После голосования выяснилось, что В (который набрал меньше всех очков) снимает свою кандидатуру в связи с переходом в другую школу. Заново голосовать не стали, а просто вычеркнули В из всех листков. В каждом листке осталось три кандидата. Поэтому первое место стало стоить 2 очка, второе – 1 очко, а третье – 0 очков. Очки просуммировали заново.
  Могло ли случиться так, что кандидат, который прежде имел больше всех очков, после самоотвода В получил меньше всех?

Прислать комментарий     Решение

Задача 66047

Тема:   [ Дискретное распределение ]
Сложность: 3+
Классы: 7,8,9

На берёзе сидели белые и чёрные вороны – всего их было 50. Белые точно были, а чёрных было не меньше, чем белых. На дубе тоже сидели белые и чёрные вороны, и было их всего 50. На дубе чёрных тоже было не меньше, чем белых или столько же, а может быть, даже на одну меньше. Одна случайная ворона перелетела с берёзы на дуб, а через некоторое время другая (может быть, та же самая) случайная ворона перелетела с дуба на берёзу. Что более вероятно: что количество белых ворон на берёзе стало таким же, как было сначала, или что оно изменилось?

Прислать комментарий     Решение

Задача 66048

Темы:   [ Дискретное распределение ]
[ Средние величины ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 8,9

На антарктической станции n полярников, все разного возраста. С вероятностью p между каждыми двумя полярниками завязываются дружеские отношения, независимо от других симпатий или антипатий. Когда зимовка заканчивается и наступает пора разъезжаться по домам, в каждой паре друзей старший даёт младшему дружеский совет. Найдите математическое ожидание числа тех, кто так и не получил ни одного дружеского совета.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .