Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
|
|
Сложность: 3+ Классы: 7,8,9,10
|
В турнире участвуют 100 борцов, все разной силы. В любом поединке двух борцов всегда побеждает тот, кто сильнее. В первом туре борцы разбились на случайные пары и провели поединки. Для второго тура борцы ещё раз разбиваются на случайные пары соперников (может случиться, что какие-то пары повторятся). Приз получает тот, кто выиграет оба поединка. Найдите:
а) наименьшее возможное число призёров турнира;
б) математическое ожидание числа призеров турнира.
|
|
Сложность: 3+ Классы: 8,9,10
|
На бал пришли n семейных пар. В каждой паре муж и жена абсолютно одинакового роста, но двух пар одного роста нет. Начинает звучать вальс, и все пришедшие разбиваются случайным образом на пары: каждый кавалер танцует со случайно выбранной дамой. Найдите математическое ожидание случайной величины X "Число кавалеров, которые ниже своей партнёрши".
|
|
Сложность: 3+ Классы: 9,10,11
|
Имеется n случайных векторов вида (y1, y2, y3), где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор a с координатами (Y1, Y2, Y3).
а) Найдите математическое ожидание случайной величины a².
б) Докажите, что
|
|
Сложность: 3+ Классы: 9,10,11
|
Согласно одной неправдоподобной легенде, Коши и Буняковский очень любили по вечерам играть в дартс. Но мишень у них была необычная – секторы на ней были неравные, так что вероятности попасть в разные секторы были не одинаковы. Однажды Коши бросил дротик и попал в мишень. Следующим бросает Буняковский. Что более вероятно: что Буняковский попадёт в тот же сектор, в который попал Коши, или что он попадёт в следующий сектор по часовой стрелке?
|
|
Сложность: 4- Классы: 7,8,9,10
|
Игровой круг в телевикторине "Что? Где? Когда?" разбит на 13 одинаковых секторов. Секторы пронумерованы числами от 1 до 13. В каждом секторе в начале игры лежит конверт с вопросом. Игроки выбирают случайный сектор с помощью волчка со стрелкой. Если этот сектор уже выпадал прежде, то конверта в нём уже нет, и тогда играет следующий по часовой стрелке сектор. Если он тоже пуст, – следующий и т.д., пока не встретится непустой сектор. До перерыва игроки разыграли шесть секторов.
а) Что более вероятно: что в числе разыгранных есть сектор №1 или что среди разыгранных есть сектор №8?
б) Найдите вероятность того, что в результате оказались разыграны подряд шесть секторов с номерами от 1 до 6.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]