Страница:
<< 1 2 [Всего задач: 8]
Задача
58165
(#23.006)
|
|
Сложность: 4- Классы: 7,8
|
На плоскости дана несамопересекающаяся замкнутая ломаная, никакие три вершины которой не лежат на одной прямой. Назовём пару несоседних звеньев ломаной особой, если продолжение одного из них пересекает другое. Докажите, что число особых пар чётно.
Задача
58166
(#23.007)
[Лемма Шпернера]
|
|
Сложность: 4+ Классы: 8,9
|
Вершины треугольника помечены цифрами 0, 1 и 2. Этот треугольник разбит на несколько треугольников таким образом, что никакая вершина одного треугольника не лежит на стороне другого. Вершинам исходного треугольника оставлены старые пометки, а дополнительные вершины получают номера 0, 1, 2, причём каждая вершина на стороне исходного треугольника должна быть помечена одной из пометок вершин этой стороны (см. рис.). Докажите, что существует треугольник разбиения,
помеченный цифрами 0, 1, 2.
Задача
58167
(#23.008)
|
|
Сложность: 4 Классы: 7,8
|
Вершины правильного 2n-угольника A1...A2n разбиты на n пар.
Докажите, что если n = 4m + 2 или n = 4m + 3, то две пары вершин являются концами равных отрезков.
Страница:
<< 1 2 [Всего задач: 8]