Страница:
<< 1 2
3 >> [Всего задач: 12]
Коля и Витя играют в следующую игру на бесконечной клетчатой бумаге. Начиная с
Коли, они по очереди отмечают узлы клетчатой бумаги — точки пересечения
вертикальных и горизонтальных прямых. При этом каждый из них своим ходом
должен отметить такой узел, что после этого все отмеченные узлы лежали в
вершинах выпуклого многоугольника (начиная со второго хода Коли). Тот из
играющих, кто не сможет сделать очередного хода, считается проигравшим. Кто
выигрывает при правильной игре?
|
|
Сложность: 4- Классы: 10,11
|
Имеется несколько камней, масса каждого из которых не превосходит 2 кг, а
общая масса равна 100 кг. Из них выбирается несколько камней, суммарная масса
которых отличается от 10 кг на наименьшее возможное для данного набора число
d. Какое максимальное значение может принимать число d для всевозможных наборов камней?
|
|
Сложность: 5- Классы: 10,11
|
Функция
y =
f (
x) определена на отрезке [0;1] и в каждой точке этого отрезка имеет первую и вторую производные. Известно, что
f (0) =
f (1) = 0 и что
|
f''(
x)| ≤ 1 на всём отрезке. Какое наибольшее значение может принимать максимум функции
f для всевозможных функций, удовлетворяющих этим условиям?
|
|
Сложность: 5 Классы: 10,11
|
Объединение нескольких кругов имеет площадь 1. Доказать, что из них можно
выбрать несколько попарно непересекающихся кругов, сумма площадей которых
больше
. (Сравни с задачей
78201.)
|
|
Сложность: 5+ Классы: 9,10,11
|
а) Существует ли последовательность натуральных чисел a1, a2, a3, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и an ≤ n10 при любом n?
б) Тот же вопрос, если an ≤ n при любом n.
Страница:
<< 1 2
3 >> [Всего задач: 12]