Страница:
<< 1 2 [Всего задач: 8]
Задача
109792
(#03.5.9.6)
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство:
Задача
109793
(#03.5.9.7)
|
|
Сложность: 5- Классы: 7,8,9
|
Можно ли в клетках бесконечного клетчатого листа расставить натуральные числа таким образом, чтобы при любых натуральных m, n > 100 сумма чисел в любом прямоугольнике m×n клеток делилась на m + n?
Задача
109794
(#03.5.9.8)
|
|
Сложность: 4 Классы: 9,10,11
|
На сторонах AP и PD остроугольного треугольника APD выбраны соответственно точки B и C. Диагонали четырёхугольника ABCD пересекаются в точке Q. Точки H1 и H2 являются ортоцентрами треугольников APD и BPC соответственно. Докажите, что если прямая H1H2 проходит через точку X пересечения описанных окружностей треугольников ABQ и CDQ, то она проходит и через точку Y пересечения описанных окружностей треугольников BQC и AQD.
(X ≠ Q, Y ≠ Q.)
Страница:
<< 1 2 [Всего задач: 8]