Страница: 1
2 3 4 5 >> [Всего задач: 23]
Задача
109787
(#03.5.9.1)
|
|
Сложность: 4- Классы: 9,10,11
|
Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
рационально. Докажите, что для любого a из M число рационально.
Задача
108125
(#03.5.9.2)
|
|
Сложность: 4- Классы: 8,9
|
Окружности S1 и S2 с центрам O1 и O2 соответственно пересекаются в точках A и B. Касательные к S1 и S2 в точке A пересекают отрезки BO2 и BO1 в точках K и L соответственно. Докажите, что KL || O1O2.
Задача
109789
(#03.5.9.3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
На прямой расположены
2
k-1
белый и
2
k-1
черный отрезок.
Известно, что любой белый отрезок пересекается хотя бы с
k черными, а
любой черный – хотя бы с
k белыми. Докажите, что найдутся черный
отрезок, пересекающийся со всеми белыми, и белый отрезок, пересекающийся со
всеми черными.
Задача
109790
(#03.5.9.4)
|
|
Сложность: 5- Классы: 9,10,11
|
Последовательность {an} строится следующим образом: a1 = p – простое число, имеющее ровно 300 ненулевых цифр, an+1 – период десятичной дроби
1/an, умноженный на 2. Найдите число a2003.
Задача
109791
(#03.5.9.5)
|
|
Сложность: 4+ Классы: 8,9,10
|
В стране n городов. Между каждыми двумя из них проложена либо автомобильная, либо железная дорога. Турист хочет объехать страну, побывав в каждом городе ровно один раз, и вернуться в город, с которого он начинал путешествие. Докажите, что турист может выбрать город, с которого он начнет путешествие, и маршрут так, что ему придётся поменять вид транспорта не более
одного раза.
Страница: 1
2 3 4 5 >> [Всего задач: 23]