ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 66152  (#9.6)

Темы:   [ Квадратный трехчлен (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

Автор: Храбров А.

Верно ли, что для любых трёх различных натуральных чисел a, b и c найдётся квадратный трёхчлен с целыми коэффициентами и положительным старшим коэффициентом, принимающий в некоторых целых точках значения a³, b³ и c³?

Прислать комментарий     Решение

Задача 66153  (#9.7)

Темы:   [ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10

Неравнобедренный треугольник ABC, в котором  ∠C = 60°,  вписан в окружность Ω. На биссектрисе угла A выбрана точка A', а на биссектрисе угла B – точка B' так, что  AB' || BC  и  B'A || AC.  Прямая A'B' пересекает Ω в точках D и E. Докажите, что треугольник CDE равнобедренный.

Прислать комментарий     Решение

Задача 66154  (#9.8)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Раскраски ]
[ Четность и нечетность ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Антипов М.

Каждая клетка доски 100×100 окрашена либо в чёрный, либо в белый цвет, причём все клетки, примыкающие к границе доски – чёрные. Оказалось, что нигде на доске нет одноцветного клетчатого квадрата 2×2. Докажите, что на доске найдётся клетчатый квадрат 2×2, клетки которого окрашены в шахматном порядке.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .