Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
|
|
Сложность: 4 Классы: 9,10,11
|
В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.
|
|
Сложность: 4 Классы: 10,11
|
Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.
|
|
Сложность: 4 Классы: 10,11
|
В пространстве даны шесть точек общего положения. Для каждых двух из них покрасим красным точки пересечения (если они есть) отрезка между ними и поверхности тетраэдра с вершинами в четырех оставшихся точках. Докажите, что число красных точек четно.
|
|
Сложность: 4+ Классы: 8,9,10
|
Докажите, что две изотомические прямые треугольника не могут пересекаться внутри его серединного треугольника. (
Изотомическими прямыми треугольника $ABC$ называются две прямые, точки пересечения которых с прямыми $BC$, $CA$, $AB$ симметричны относительно середин соответствующих сторон треугольника.)
|
|
Сложность: 4+ Классы: 9,10,11
|
В треугольнике $ABC$ точка $M$ – середина дуги $BAC$ описанной окружности $\Omega$, $I$ – центр вписанной окружности, $N$ – вторая точка пересечения прямой $AI$ с $\Omega$, $E$ – точка касания стороны $BC$ с соответствующей вневписанной окружностью, $Q$ – вторая точка пересечения окружности $IMN$ с прямой, проходящей через $I$ и параллельной $BC$. Докажите, что прямые $AE$ и $NQ$ пересекаются на $\Omega$.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]