ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть уравнение некоторой прямой или окружности имеет вид  Azz + Bz – B z + C = 0.  Пусть образ этой линии при отображении    задается уравнением  A'zz + B'z – B' z + C' = 0,  где A' и C' также чисто мнимые числа. Выразите A', B' и C' через A, B и C.

Вниз   Решение


Докажите, что число вида a0...09 – не полный квадрат (при любом числе нулей, начиная с одного; a – цифра, отличная от 0).

 

ВверхВниз   Решение


Положительные числа a, b, c, x, y, таковы, что
    x² + xy + y² = a²,
    y² + yz + z² = b²,
    x² + xz + z² = c².
Выразите величину  xy + yz + xz  через a, b и c.

ВверхВниз   Решение


Покажите, как разбить пространство
  а) на одинаковые тетраэдры,
  б) на одинаковые равногранные тетраэдры
(тетраэдр называется равногранным, если все его грани – равные треугольники).

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 65454

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3+
Классы: 8,9

Из одинаковых неравнобедренных прямоугольных треугольников составили прямоугольник (без дырок и наложений).
Обязательно ли какие-то два из этих треугольников расположены так, что образуют прямоугольник?

Прислать комментарий     Решение

Задача 65458

Тема:   [ Уравнения в целых числах ]
Сложность: 3+
Классы: 9,10,11

Пусть p – простое число. Сколько существует таких натуральных n, что pn делится на  p + n?

Прислать комментарий     Решение

Задача 65461

Темы:   [ Замощения костями домино и плитками ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9

Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).

  а) Придумайте выдающийся многоугольник из четырёх клеток.
  б) При каких  n > 4  существует выдающийся многоугольник из n клеток?

Прислать комментарий     Решение

Задача 65462

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Из целых чисел от 1 до 100 удалили k чисел. Обязательно ли среди оставшихся чисел можно выбрать k различных чисел с суммой 100, если
  а)  k = 9;   б)  k = 8?

Прислать комментарий     Решение

Задача 65463

Темы:   [ Неравенство треугольника (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Периметр треугольника ]
Сложность: 3+
Классы: 8,9

Докажите, что сумма длин любых двух медиан произвольного треугольника
  а) не больше ¾ P, где P – периметр этого треугольника;
  б) не меньше ¾ p, где p – полупериметр этого треугольника.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .