Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
|
|
Сложность: 4- Классы: 7,8,9
|
Учитель заполнил клетчатую таблицу 5×5 различными целыми числами и выдал по одной её копии Боре и Мише. Боря выбирает наибольшее число в таблице, затем вычёркивает строку и столбец, содержащие это число, затем выбирает наибольшее число из оставшихся, вычёркивает строку и столбец, содержащие это число, и т.д. Миша производит аналогичные операции, каждый раз выбирая наименьшие числа. Может ли учитель так заполнить таблицу, что сумма пяти чисел, выбранных Мишей, окажется больше суммы пяти чисел, выбранных Борей?
|
|
Сложность: 4- Классы: 9,10,11
|
Может ли сумма тангенсов углов одного треугольника
равняться сумме тангенсов углов другого, если один из этих треугольников
остроугольный, а другой тупоугольный?
На биссектрисе данного угла фиксирована точка. Рассматриваются всевозможные равнобедренные треугольники, у которых вершина находится в этой точке, а концы оснований лежат на разных сторонах этого угла. Найти геометрическое место середин оснований таких треугольников.
|
|
Сложность: 4 Классы: 8,9,10
|
Натуральное число n таково, что 3n + 1 и 10n + 1 являются квадратами натуральных чисел. Докажите, что число 29n + 11 – составное.
|
|
Сложность: 4+ Классы: 9,10,11
|
Можно ли намотать нерастяжимую ленту на бесконечный конус так, чгобы сделать вокруг его оси бесконечно много оборотов? Ленту нельзя наматывать на вершину конуса, а также разрезать и перекручивать. При необходимости можно считать, что она бесконечна, а угол между осью и образующей конуса достаточно мал.
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]