Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]
Задача
109567
(#94.5.9.3)
|
|
Сложность: 5- Классы: 8,9,10
|
На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?
Задача
109568
(#94.5.9.4)
|
|
Сложность: 5+ Классы: 9,10,11
|
На прямой отмечены
n различных синих точек и
n различных красных точек.
Докажите, что сумма попарных расстояний между точками одного цвета не превосходит суммы попарных
расстояний между точками разного цвета.
Задача
109569
(#94.5.9.5)
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите тождество
+
+..+
=
=
+
+..+
.
Задача
109570
(#94.5.9.6)
|
|
Сложность: 4- Классы: 8,9,10
|
Натуральные числа от 1 до 1000 по одному выписали на карточки, а затем накрыли этими карточками
какие-то 1000 клеток прямоугольника
1
x 1994
. Если соседняя справа от карточки с числом
n
клетка свободна, то за один ход ее разрешается накрыть карточкой с числом
n+1
. Докажите, что
нельзя сделать более полумиллиона таких ходов.
Задача
108203
(#94.5.9.7)
|
|
Сложность: 4- Классы: 8,9,10
|
Трапеция ABCD такова, что на её боковых сторонах AD и BC существуют такие точки P и Q соответственно, что ∠APB = ∠CPD, ∠AQB = ∠CQD.
Докажите, что точки P и Q равноудалены от точки пересечения диагоналей трапеции.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 48]