ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан тетраэдр AB С D , в котором AB = 6 , AC = 7 , AD = 3 , BC = 8 , BD = 4 , CD = 5 . Найдите CM , где M – точка пересечения медиан грани ADB . ![]() ![]() Диагонали AC и BD вписанного четырёхугольника ABCD пересекаются в точке P. Точка Q выбрана на отрезке BC так, что PQ ⊥ AC. ![]() ![]() |
Страница: 1 [Всего задач: 5]
Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
Найдутся ли такие функции p(x) и q(x), что p(x) – чётная функция, а p(q(x)) – нечётная функция (отличная от тождественно нулевой)?
Известно, что число a положительно, а неравенство 10 < ax < 100 имеет ровно пять решений в натуральных числах.
Четырёхугольник ABCD – вписанный, AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
У Пети есть n³ белых кубиков 1×1×1. Он хочет сложить из них куб n×n×n, снаружи полностью белый. Какое наименьшее число граней кубиков должен закрасить Вася, чтобы помешать Пете? Решите задачу при a) n = 3; б) n = 1000.
Страница: 1 [Всего задач: 5] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |