ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

a) Двое показывают карточный фокус. Первый снимает пять карт из колоды, содержащей 52 карты (предварительно перетасованной кем-то из зрителей), смотрит в них и после этого выкладывает их в ряд слева направо, причём одну из карт кладёт рубашкой вверх, а остальные – картинкой вверх. Второй участник фокуса отгадывает закрытую карту. Докажите, что они могут так договориться, что второй всегда будет угадывать карту.

б) Второй фокус отличается от первого тем, что первый участник выкладывает слева направо четыре карты картинкой вверх, а одну не выкладывает. Могут ли и в этом случае участники фокуса так договориться, чтобы второй всегда угадывал невыложенную карту?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 116166  (#1)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Сечения, развертки и остовы (прочее) ]
[ Куб ]
[ Наглядная геометрия в пространстве ]
Сложность: 2+
Классы: 8,9

Автор: Шевяков В.

Дана прямоугольная полоска размером 12×1. Oклейте этой полоской в два слоя куб с ребром 1 (полоску можно сгибать, но нельзя надрезать).

Прислать комментарий     Решение

Задача 116167  (#2)

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Дан равнобедренный прямоугольный треугольник ABC. Hа продолжениях катетов AB и AC за вершины B и C отложили равные отрезки BK и CL. E и F – точки пересечения отрезка KL и прямых, перпендикулярных KC и проходящих через точки B и A соответственно. БикЮ Докажите, что  EF = FL.

Прислать комментарий     Решение

Задача 116168  (#3)

Темы:   [ Параллелограммы (прочее) ]
[ Метод ГМТ ]
[ ГМТ - прямая или отрезок ]
[ ГМТ - окружность или дуга окружности ]
[ Признаки равенства прямоугольных треугольников ]
[ Средняя линия трапеции ]
[ Четырехугольники (построения) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте параллелограмм ABCD, если на плоскости отмечены три точки: середины его высот BH и BP и середина стороны AD.

Прислать комментарий     Решение

Задача 116169  (#4)

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямые, касающиеся окружностей (прочее) ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

Прислать комментарий     Решение

Задача 116170  (#5)

Темы:   [ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Замечательные точки и линии в треугольнике (прочее) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC. Tочки A1, B1 и C1 симметричны его вершинам относительно противоположных сторон. C2 – точка пересечения прямых AB1 и BA1, точки A2 и B2 определяются аналогично. Докажите, что прямые A1A2, B1B2 и C1C2 параллельны.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .