Страница: 1 [Всего задач: 5]
Под одной из клеток доски 8×8 зарыт клад. Под каждой из остальных зарыта табличка, в которой указано, за какое наименьшее число шагов можно добраться из этой клетки до клада (одним шагом можно перейти из клетки в соседнюю по стороне клетку). Какое наименьшее число клеток надо перекопать, чтобы наверняка достать клад?
Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?
Дан параллелограмм ABCD. Вписанные окружности треугольников ABC и ADC касаются диагонали AC в точках X и Y. Вписанные окружности треугольников BCD и BAD касаются диагонали BD в точках Z и T. Докажите, что если все точки X, Y, Z, T различны, то они являются вершинами прямоугольника.
В выражении 10 : 9 : 8 : 7 : 6 : 5 : 4 : 3 : 2 : 1 расставили скобки так, что в результате вычислений получилось целое число. Каким
а) наибольшим; б) наименьшим может быть это число?
У Носорога на шкуре есть вертикальные и горизонтальные складки. Всего складок 17. Если Носорог чешется боком о дерево, то либо две горизонтальные, либо две вертикальные складки на этом боку пропадают, зато на другом боку прибавляются две складки: горизонтальная и вертикальная. (Если двух складок одного направления нет, то ничего не происходит.) Носорог почесался несколько раз. Могло ли случиться, что на каждом боку вертикальных складок стало столько, сколько там раньше было горизонтальных, а горизонтальных стало столько, сколько там было вертикальных?
Страница: 1 [Всего задач: 5]