ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На столе стоят семь стаканов – все вверх дном. За один ход можно перевернуть любые четыре стакана.
Можно ли за несколько ходов добиться того, чтобы все стаканы стояли правильно?

Вниз   Решение


Докажите, что центр поворотной гомотетии, переводящей отрезок AB в отрезок A1B1, совпадает с центром поворотной гомотетии, переводящей отрезок AA1 в отрезок BB1.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 111333  (#1)

Темы:   [ Средние величины ]
[ Турниры и турнирные таблицы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

Прислать комментарий     Решение

Задача 111334  (#2)

Темы:   [ Симметрия помогает решить задачу ]
[ Процессы и операции ]
[ Задачи на движение ]
Сложность: 4
Классы: 8,9,10

Велосипедист путешествует по кольцевой дороге, двигаясь в одном направлении. Каждый день он проезжает 71 км и останавливается ночевать на обочине. На дороге есть аномальная зона длины 71 км. Если велосипедист останавливается в ней на ночлег на расстоянии y км от одной границы зоны, просыпается он в противоположном месте зоны, на расстоянии y км от другой её границы. Докажите, что в каком бы месте велосипедист ни начал своё путешествие, рано или поздно он остановится в нём на ночлег или же в нём проснётся.

Прислать комментарий     Решение

Задача 111335  (#3)

Темы:   [ Вписанный угол равен половине центрального ]
[ Вспомогательные равные треугольники ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

Пусть AL – биссектриса треугольника ABC, O – центр описанной около этого треугольника окружности, D – такая точка на стороне AC, что  AD = AB.  Докажите, что прямые AO и LD перпендикулярны.

Прислать комментарий     Решение

Задача 111336  (#4)

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Сочетания и размещения ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4+
Классы: 9,10

Назовём усложнением числа приписывание к нему одной цифры в начало, в конец или между любыми двумя его цифрами. Существует ли натуральное число, из которого невозможно получить полный квадрат с помощью ста усложнений?

Прислать комментарий     Решение

Задача 111337  (#5)

Темы:   [ Процессы и операции ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 9,10

У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .