ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



Задача 30757

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 7,8,9

В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 33138

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 6,7,8

На доске написаны числа
  а) 1, 2. 3, ..., 1997, 1998;
  б) 1, 2, 3, ..., 1998, 1999;
  в) 1, 2, 3, ..., 1999, 2000.
Разрешается стереть с доски любые два числа, заменив их разностью большего и меньшего. Можно ли, выполнив эту операцию много раз. получить на доске единственное число – 0? Если да, то как это сделать?

Прислать комментарий     Решение

Задача 35047

Темы:   [ Четность и нечетность ]
[ Взвешивания ]
[ Принцип крайнего (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

B cтаде 101 корова. Если увести любую одну, то оставшихся можно разделить на два стада по 50 коров в каждом, так что суммарный вес коров первого стада равен суммарному весу коров другого стада. Известно, что каждая корова весит целое число килограммов. Докажите, что все коровы весят одинаково.

Прислать комментарий     Решение

Задача 35488

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3+
Классы: 7,8

На шахматной доске расставлены 8 ладей так, что они не бьют друг друга.
Докажите, что на полях чёрного цвета расположено чётное число ладей.

Прислать комментарий     Решение

Задача 58162

Темы:   [ Треугольники (прочее) ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8

На плоскости лежат три шайбы A, B и C. Хоккеист бьёт по одной из шайб так, чтобы она прошла между двумя другими и остановилась в некоторой точке. Могут ли все шайбы вернуться на свои места после25 ударов?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .