ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 176]      



Задача 56956  (#05.115B1)

Темы:   [ Подерный (педальный) треугольник ]
[ Изогональное сопряжение ]
Сложность: 6
Классы: 9

Дан параллелограмм ABCD. Докажите, что подерная окружность точки D относительно треугольника ABC проходит через точку пересечения его диагоналей.
Прислать комментарий     Решение


Задача 55595  (#05.105)

 [Прямая Эйлера]
Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,9

Докажите, что в любом треугольнике точка H пересечения высот (ортоцентр), центр O описанной окружности и точка M пересечения медиан (центр тяжести) лежат на одной прямой, причём точка M расположена между точками O и H, и MH = 2MO.

Прислать комментарий     Решение


Задача 52511  (#05.106)

 [Окружность девяти точек]
Темы:   [ Прямая Эйлера и окружность девяти точек ]
[ Четыре точки, лежащие на одной окружности ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 5
Классы: 8,9,10

Докажите, что основания высот, середины сторон и середины отрезков от ортоцентра до вершин треугольника лежат на одной окружности.

Прислать комментарий     Решение


Задача 56959  (#05.107)

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5+
Классы: 8,9,10

Высоты треугольника ABC пересекаются в точке H.
а) Докажите, что треугольники ABC, HBC, AHC и ABH имеют общую окружность девяти точек.
б) Докажите, что прямые Эйлера треугольников  ABC, HBC, AHC и ABH пересекаются в одной точке.
в) Докажите, что центры описанных окружностей треугольников  ABC, HBC, AHC и ABH образуют четырехугольник, симметричный четырехугольнику HABC.
Прислать комментарий     Решение


Задача 56960  (#05.108)

Тема:   [ Прямая Эйлера и окружность девяти точек ]
Сложность: 5
Классы: 9

Какие стороны пересекает прямая Эйлера в остроугольном и тупоугольном треугольниках?
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .