ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть p – простое число и p > 3. ![]() ![]() Функция Эйлера φ(n) определяется как количество чисел от 1 до n, взаимно простых с n. Найдите a) φ(17); б) φ(p); в) φ(p²); г) φ(pα). ![]() ![]() |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55]
Найдите такое n, чтобы число 10n – 1 делилось на а) 7; б) 13; в) 91; г) 819.
Докажите, что
Малая теорема Ферма. Пусть p – простое число и
p не делит a. Тогда ap–1 ≡ 1 (mod p).
Пусть p – простое число, p ≠ 2, 5. Докажите, что существует число вида 1...1, кратное p.
Для каких n число n2001 – n4 делится на 11?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 55] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |