Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]
Задача
64623
(#9.6)
|
|
Сложность: 4- Классы: 8,9,10
|
Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше?
Задача
64631
(#10.6)
|
|
Сложность: 4- Классы: 10,11
|
Треугольник ABC вписан в окружность Ω с центром O. Окружность Ω1, построенная на AO как на диаметре, пересекает описанную окружность Ω2 треугольника OBC в точке S, отличной от O. Касательные к Ω в точках B и C пересекаются в точке P. Докажите, что точки A, S и P лежат на одной прямой.
Задача
64624
(#11.6)
|
|
Сложность: 4- Классы: 8,9,10
|
Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?
Задача
64624
(#9.7)
|
|
Сложность: 4- Классы: 8,9,10
|
Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?
Задача
64632
(#10.7)
|
|
Сложность: 4- Классы: 10,11
|
По кругу стоят 101000 натуральных чисел. Между каждыми двумя соседними числами записали их наименьшее общее кратное.
Могут ли эти наименьшие общие кратные образовать 101000 последовательных чисел (расположенных в каком-то порядке)?
Страница:
<< 1 2 3 4
5 >> [Всего задач: 24]