Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 69]
|
|
Сложность: 3+ Классы: 8,9,10
|
В выпуклом четырёхугольнике ABCD ∠A = ∠В = 60° и ∠СAВ = ∠CBD. Докажите, что AD + CB = AB.
|
|
Сложность: 3+ Классы: 8,9,10
|
Петя нашел сумму всех нечётных делителей некоторого чётного числа (включая 1), а Вася – сумму всех чётных делителей этого же числа (включая само число). Может ли произведение двух найденных чисел быть точным квадратом?
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что для положительных значений а, b и c выполняется неравенство
≤
.
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.
|
|
Сложность: 3+ Классы: 8,9,10
|
В строку выписаны 40 знаков: 20 крестиков и 20 ноликов. За один ход можно поменять местами любые два соседних знака. За какое наименьшее количество ходов можно гарантированно добиться того, чтобы какие-то 20 стоящих подряд знаков оказались крестиками?
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 69]