Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 49]
Задача
65018
(#17)
|
|
Сложность: 4+ Классы: 9,10,11
|
Постройте треугольник по высоте и биссектрисе, проведённым из одной вершины, и медиане, проведённой из другой вершины.
Задача
65019
(#18)
|
|
Сложность: 4 Классы: 8,9,10,11
|
На хорде AC окружности ω выбрали точку B. На отрезках AB и BC как на диаметрах построили окружности ω1 и ω2 с центрами O1 и O2, которые пересекают ω второй раз в точках D и E соответственно. Лучи O1D и O2E пересекаются в точке F. Лучи AD и CE пересекаются в точке G.
Докажите, что прямая FG проходит через середину AC.
Задача
65020
(#19)
|
|
Сложность: 4+ Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность с центром O. Точки C' и D' диаметрально противоположны точкам C и D соответственно. Касательные к окружности в точках C' и D' пересекают прямую AB в точках E и F (A лежит между E и B, B – между A и F). Прямая EO пересекает стороны AC и BC в точках X и Y, а прямая FO пересекает стороны AD и BD в точках U и V. Докажите, что XV = YU.
Задача
65021
(#20)
|
|
Сложность: 5- Классы: 9,10,11
|
Вписанная окружность остроугольного треугольника ABC касается его сторон AB, BC, CA в точках C1, A1, B1 соответственно. Пусть A2, B2 – середины отрезков B1C1, A1C1 соответственно, O – центр описанной окружности треугольника ABC, P – одна из точек пересечения прямой CO с вписанной окружностью. Прямые PA2 и PB2 вторично пересекают вписанную окружность в точках A' и B'. Докажите, что прямые AA' и BB' пересекаются на высоте треугольника, опущенной на AB.
Задача
65022
(#21)
|
|
Сложность: 3+ Классы: 10,11
|
Дан выпуклый четырёхугольник ABCD. Известно, что ∠ABD + ∠ACD > ∠BAC + ∠BDC. Докажите, что SABD + SACD > SBAC + SBDC.
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 49]