Страница:
<< 1 2 3 4 5 [Всего задач: 24]
|
|
Сложность: 4- Классы: 9,10,11
|
Каждую пятницу десять джентльменов приходят в клуб, и каждый отдает швейцару свою шляпу. Каждая шляпа точно впору своему хозяину, но двух одинаковых по размеру шляп нет. Уходят джентльмены по одному в случайном порядке.
Провожая очередного джентльмена, швейцар клуба пробует надеть ему на голову первую попавшуюся шляпу. Если налезает, джентльмен уходит в этой шляпе. Если мала, то швейцар пробует следующую случайную шляпу из оставшихся. Если все оставшиеся шляпы оказались малы, швейцар говорит бедняге: "Сэр, сегодня шляпа вам не к лицу", и джентльмен отправляется домой с непокрытой головой. Найдите вероятность того, что в следующую пятницу у швейцара не останется ни одной шляпы.
|
|
Сложность: 4- Классы: 10,11
|
Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10.
Найдите математическое ожидание числа моментов, когда наступала ничья.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Поля шахматной доски пронумерованы по строкам сверху вниз числами от 1 до 64.
На доску случайным образом поставлено шесть ладей, которые не бьют друг друга (одна из возможных расстановок показана на рисунке). Найдите математическое ожидание суммы номеров полей, занятых ладьями.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Преподаватель кружка по теории вероятностей откинулся в кресле и посмотрел на экран. Список записавшихся готов. Всего получилось n человек. Только они пока не по алфавиту, а в случайном порядке, в каком они приходили на занятие.
"Надо отсортировать их в алфавитном порядке, – подумал преподаватель. – Пойду по порядку сверху вниз, и, если нужно,
буду переставлять фамилию ученика вверх в подходящее место. Каждую фамилию придётся переставить не более одного раза".
Докажите, что математическое ожидание числа фамилий, которые не придётся переставлять, равно 1 + ½ + ⅓ + ... + 1/n.
Страница:
<< 1 2 3 4 5 [Всего задач: 24]