Страница: 1
2 >> [Всего задач: 7]
Задача
66745
(#1)
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Король вызвал двух мудрецов и объявил им задание: первый задумывает семь различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвёртое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться.
Могут ли мудрецы гарантированно справиться с заданием?
Задача
66746
(#2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.
Задача
66747
(#3)
|
|
Сложность: 4- Классы: 8,9,10,11
|
К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.
Задача
66748
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?
Задача
66749
(#5)
|
|
Сложность: 4 Классы: 8,9,10,11
|
В клетках квадратной таблицы $n\times n$, где $n$ > 1, требуется расставить различные целые числа от 1 до $n^2$ так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на $n$, – в разных строках и в разных столбцах. При каких $n$ это возможно?
Страница: 1
2 >> [Всего задач: 7]