ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить? ![]() ![]() По неподвижной окружности, касаясь ее изнутри, катится без скольжения окружность вдвое меньшего радиуса. Какую траекторию описывает фиксированная точка K подвижной окружности? ![]() ![]() ![]() Последовательность (an) задана условиями a1= 1000000 , an+1=n[ ![]() ![]() ![]() Разрежьте изображённую фигуру на две части, из которых можно сложить целый квадрат 8×8.
![]() ![]() |
Страница: 1 [Всего задач: 3]
На доске выписаны числа от 1 до 50. Разрешено стереть любые два числа и вместо них записать одно число – модуль их разности. После 49-кратного повторения указанной процедуры на доске останется одно число. Какое это может быть число?
Дан треугольник C1C2O. В нём проводится биссектриса C2C3, затем
в треугольнике C2C3O – биссектриса C3C4 и так далее.
Докажите, что если a, b, c, d, x, y, u, v – вещественные числа и abcd > 0, то (ax + bu)(av + by)(cx + dv)(cu + dy) ≥ (acuvx + bcuxy + advxy + bduvy)(acx + bcu + adv + bdy).
Страница: 1 [Всего задач: 3] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |