Страница: 1 [Всего задач: 5]
Задача
78174
(#1)
|
|
Сложность: 2+ Классы: 9,10
|
Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами
емкостью
2 -
и
, перелить из одной в другую ровно 1 литр?
Задача
78175
(#2)
|
|
Сложность: 2 Классы: 7,8,9,10
|
Заметим, что если перевернуть лист, на котором написаны цифры, то цифры 0,
1, 8 не изменятся, 6 и 9 поменяются местами, остальные потеряют смысл.
Сколько существует девятизначных чисел, которые при переворачивании листа не
изменяются?
Задача
78176
(#3)
|
|
Сложность: 2+ Классы: 9,10
|
Дан выпуклый четырёхугольник
ABCD. Середины сторон
AB и
CD обозначим
соответственно через
K и
M, точку пересечения
AM и
DK — через
O,
точку пересечения
BM и
CK — через
P. Доказать, что площадь
четырёхугольника
MOKP равна сумме площадей треугольников
BPC и
AOD.
Задача
78172
(#4)
|
|
Сложность: 4- Классы: 8,9
|
Как должна двигаться ладья по шахматной доске, чтобы побывать на каждом поле по
одному разу и сделать наименьшее число поворотов?
Задача
78177
(#5)
|
|
Сложность: 5- Классы: 9,10
|
Даны две непересекающиеся окружности с центрами в точках
O1 и
O2. Пусть
a1 и
a2 — внутренние касательные к этим окружностям,
a3 и
a4 —
внешние касательные к ним. Пусть, далее,
a5 и
a6 — касательные к
окружности с центром в
O1, проведённые из точки
O2,
a7 и
a8 —
касательные к окружности с центром в точке
O2, проведённые из точки
O1.
Обозначим через
O точку пересечения
a1 и
a2. Доказать, что с центром в
точке
O можно провести две окружности так, чтобы первая касалась
a3 и
a4, вторая касалась
a5,
a6,
a7,
a8, причём радиус второй в два
раза меньше радиуса первой.
Страница: 1 [Всего задач: 5]