Страница:
<< 99 100 101 102
103 104 105 >> [Всего задач: 644]
[Делимость на n]
|
|
Сложность: 3 Классы: 7,8,9
|
Имеется n целых чисел. Доказать, что среди них найдется несколько, или быть может одно, сумма которых делится на n.
|
|
Сложность: 3 Классы: 7,8,9
|
Есть прямоугольный стол. Два игрока начинают по очереди класть на него по одному евро так, чтобы эти монеты не перекрывали друг друга. Кто не может сделать ход - проигрывает. Кто выиграет при правильной игре?
|
|
Сложность: 3 Классы: 7,8,9
|
а) Двое играют в такую игру: на столе лежат 7 монет по два фунта и 7 монет по одному фунту. За ход разрешается взять монет на сумму не более трех фунтов. Забравший последнюю монету выигрывает. Кто победит при правильной игре?
б) Тот же вопрос, если и тех, и других монет - по 12.
|
|
Сложность: 3 Классы: 6,7,8
|
На третье занятие кружка по математике пришло 17 человек. Может ли случиться так, что каждая девочка знакома ровно с тремя из присутствующих на занятии кружковцев, а каждый мальчик ровно с пятью?
Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.
Страница:
<< 99 100 101 102
103 104 105 >> [Всего задач: 644]