ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 416]      



Задача 104069

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

В примере на сложение двух чисел первое слагаемое меньше суммы на 2000, а сумма больше второго слагаемого на 6.
Восстановите пример.

Прислать комментарий     Решение

Задача 104074

Темы:   [ Формула включения-исключения ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 6,7,8

В саду у Ани и Вити росло 2006 розовых кустов. Витя полил половину всех кустов, и Аня полила половину всех кустов. При этом оказалось, что ровно три куста, самые красивые, были политы и Аней, и Витей. Сколько розовых кустов остались не политыми?

Прислать комментарий     Решение

Задача 104075

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6,7

Цифры трёхзначного числа A записали в обратном порядке и получили число B. Может ли число, равное сумме A и B, записываться только нечётными цифрами?
Прислать комментарий     Решение


Задача 104079

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6,7

У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число.
Прислать комментарий     Решение


Задача 104084

Тема:   [ Уравнения с модулями ]
Сложность: 2
Классы: 7,8,9

Решите уравнение: |x - 2005| + |2005 - x| = 2006.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .