Страница: 1
2 3 4 5 >> [Всего задач: 25]
|
|
Сложность: 3- Классы: 7,8,9
|
Найдите какие-нибудь четыре попарно различных натуральных числа a,
b, c, d, для которых числа a² + 2cd + b² и c² + 2ab + d² являются полными квадратами.
|
|
Сложность: 3 Классы: 8,9,10
|
Про действительные числа a, b, c известно, что (a + b + c)c < 0. Докажите, что b² – 4ac > 0.
|
|
Сложность: 3 Классы: 7,8,9
|
Сравнив дроби 111110/111111, 222221/222223, 333331/333334, расположите их в порядке возрастания.
|
|
Сложность: 3 Классы: 6,7,8
|
Петин счет в банке содержит 500 долларов. Банк разрешает совершать операции только двух видов: снимать 300 долларов или добавлять 198 долларов.
Какую максимальную сумму Петя может снять со счета, если других денег у него
нет?
|
|
Сложность: 3 Классы: 7,8,9
|
На доске в лаборатории написаны два числа. Каждый день старший научный сотрудник Петя стирает с доски оба числа и пишет вместо них их среднее
арифметическое и среднее гармоническое. Утром первого дня на доске были написаны
числа 1 и 2. Найдите произведение чисел, записанных на доске вечером 1999-го
дня.
Страница: 1
2 3 4 5 >> [Всего задач: 25]