ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В квадрате ABCD на стороне AB взята точка P, на стороне BC — точка Q, на стороне CD — точка R, на стороне DA — S; оказалось, что фигура PQRS — прямоугольник. Доказать, что тогда прямоугольник PQRS — либо квадрат, либо обладает тем свойством, что его стороны параллельны диагоналям квадрата. Решение По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно. Решение |
Страница: << 1 2 3 4 5 >> [Всего задач: 25]
По рёбрам выпуклого многогранника с 2003 вершинами проведена замкнутая ломаная, проходящая через каждую вершину ровно один раз. Докажите, что в каждой из частей, на которые эта ломаная делит поверхность многогранника, количество граней с нечётным числом сторон нечётно.
Для положительных чисел x, y, z выполнено равенство x²/y + y²/z + z²/x = x²/z + y²/x + z²/y. Докажите, что хотя бы два из чисел x, y, z равны между собой.
В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
Можно ли покрасить некоторые клетки доски 8×8 так, чтобы в любом квадрате 3×3 было ровно 5 закрашенных клеток, а в каждом прямоугольнике 2×4 (вертикальном или горизонтальном) – ровно 4 закрашенные клетки?
В треугольнике ABC на сторонах AC и BC взяты такие точки X и Y, что ∠ABX = ∠YAC, ∠AYB = ∠BXC, XC = YB. Найдите углы треугольника ABC.
Страница: << 1 2 3 4 5 >> [Всего задач: 25] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|