ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Петя разрезал фигуру на две равные части, как показано на рисунке. Придумайте, как разрезать эту фигуру на две равные части другим способом.


Вниз   Решение


Играют двое. В начале игры есть одна палочка. Первый игрок ломает эту палочку на две части. И так игроки по очереди ломают на две части любую палочку из имеющихся к данному моменту. Если, сломав палочку, игрок может сложить из всех имеющихся палочек один или несколько отдельных треугольников (каждый – ровно из трёх палочек), то он выиграл. Кто из игроков (первый или второй) может обеспечить себе победу независимо от действий другого игрока?

ВверхВниз   Решение


В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

ВверхВниз   Решение


Четыре мышонка: Белый, Серый, Толстый и Тонкий делили головку сыра. Они разрезали её на 4 внешне одинаковые дольки. В некоторых дольках оказалось больше дырок, поэтому долька Тонкого весила на 20 г меньше дольки Толстого, а долька Белого — на 8 г меньше дольки Серого. Однако Белый не расстроился, т.к. его долька весила ровно четверть от массы всего сыра.

Серый отрезал от своего куска 8 г, а Толстый — 20 г. Как мышата должны поделить образовавшиеся 28 г сыра, чтобы у всех сыра стало поровну? Не забудьте пояснить свой ответ.

ВверхВниз   Решение


Может ли среднее арифметическое 35 целых чисел равняться 6,35?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]      



Задача 98024

Темы:   [ Уравнения в целых числах ]
[ Цепные (непрерывные) дроби ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 2
Классы: 7,8,9

Решить в натуральных числах уравнение:  

Прислать комментарий     Решение

Задача 107672

Темы:   [ Признаки делимости на 2 и 4 ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 7,8,9

Подряд без пробелов выписали все чётные числа от 12 до 34. Получилось число 121416182022242628303234. Делится ли оно на 24?

Прислать комментарий     Решение

Задача 107698

Темы:   [ Средние величины ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 6,7,8,9

Может ли среднее арифметическое 35 целых чисел равняться 6,35?

Прислать комментарий     Решение

Задача 111636

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Текстовые задачи (прочее) ]
Сложность: 2
Классы: 6,7,8

Танины часы отстают за каждый час на 5 минут. В полдень к Тане придут гости. Сейчас 6 часов утра. На какое время ей надо поставить стрелки часов, чтобы в полдень часы показывали правильное время?

Прислать комментарий     Решение

Задача 115707

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7,8

Можно ли заменить буквы цифрами в ребусе


ШЕ· СТЬ + 1=СЕ· МЬ

так, чтобы получилось верное равенство (разные буквы нужно заменять разными цифрами, одинаковые буквы — одинаковыми цифрами)?
Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .