Версия для печати
Убрать все задачи
Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

Решение
Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?


Решение
Дан квадратный лист клетчатой бумаги размером
100×100 клеток. Проведено несколько несамопересекающихся
ломаных, идущих по сторонам клеток и не имеющих общих
точек. Эти ломаные идут строго внутри квадрата, а концами
обязательно выходят на границу. Докажите, что кроме
вершин квадрата найдется еще узел (внутри квадрата или
на границе), не принадлежащий ни одной ломаной.


Решение
Шесть равносторонних треугольников расположены, как на рисунке.
Докажите, что сумма площадей заштрихованных треугольников равна сумме площадей закрашенных треугольников.


Решение
Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?

Решение