ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 108076  (#1)

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника ]
Сложность: 3-
Классы: 8,9

В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.

Прислать комментарий     Решение

Задача 98339  (#2)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Взвешивания ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 7,8,9,10

Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков разрезать на две части и разложить сыр в два пакета так, что части разрезанного куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?

Прислать комментарий     Решение

Задача 107831  (#3)

Темы:   [ Турниры и турнирные таблицы ]
[ Разбиения на пары и группы; биекции ]
[ Неравенство Коши ]
Сложность: 4
Классы: 8,9,10

2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.

Прислать комментарий     Решение

Задача 107829  (#4)

Темы:   [ Шестиугольники ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 8,9,10

В выпуклом шестиугольнике AC1BA1CB1   AB1 = AC1BC1 = BA1CA1 = CB1  и  ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.

Прислать комментарий     Решение

Задача 98342  (#5)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 8,9

Докажите, что число
  а)  9797,
  б)  199717
нельзя представить в виде суммы кубов нескольких идущих подряд натуральных чисел.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .