Страница: 1
2 >> [Всего задач: 7]
В треугольнике одна сторона в три раза меньше суммы двух других. Докажите,
что против этой стороны лежит наименьший угол треугольника.
Задача
98339
(#2)
|
|
Сложность: 3 Классы: 7,8,9,10
|
Имеется 25 кусков сыра разного веса. Всегда ли можно один из этих кусков
разрезать на две части и разложить сыр в два пакета так, что части разрезанного
куска окажутся в разных пакетах, веса пакетов будут одинаковы и число кусков в пакетах также будет одинаково?
|
|
Сложность: 4 Классы: 8,9,10
|
2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом шестиугольнике AC1BA1CB1 AB1 = AC1, BC1 = BA1, CA1 = CB1 и ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.
Задача
98342
(#5)
|
|
Сложность: 3+ Классы: 8,9
|
Докажите, что число
а) 9797,
б) 199717
нельзя представить в виде суммы кубов нескольких идущих подряд натуральных чисел.
Страница: 1
2 >> [Всего задач: 7]