Страница: 1
2 >> [Всего задач: 6]
В треугольнике одна сторона в три раза меньше суммы двух других. Докажите,
что против этой стороны лежит наименьший угол треугольника.
|
|
Сложность: 3 Классы: 8,9,10
|
На тарелке лежат 9 разных кусочков сыра. Всегда ли можно разрезать один из них на две части так, чтобы полученные 10 кусочков делились бы на две порции равной массы по 5 кусочков в каждой?
|
|
Сложность: 4- Классы: 8,9,10
|
В выпуклом шестиугольнике AC1BA1CB1 AB1 = AC1, BC1 = BA1, CA1 = CB1 и ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.
|
|
Сложность: 4 Классы: 7,8,9,10
|
По окружности в одном направлении на равных расстояниях курсируют n поездов. На этой дороге в вершинах правильного треугольника расположены станции A, B и C (обозначенные по направлению движения). Ира входит на станцию A и одновременно Лёша входит на станцию B, чтобы уехать на ближайших поездах. Известно, что если они входят на станции в тот момент, когда машинист Рома проезжает лес, то Ира сядет в поезд раньше Лёши, а в остальных случаях Лёша – раньше Иры или одновременно с ней. Какая часть дороги проходит по лесу?
|
|
Сложность: 4 Классы: 8,9,10
|
2n шахматистов дважды провели круговой турнир (за победу начисляется одно очко, за ничью – ½, за поражение – 0).
Докажите, что если сумма очков каждого изменилась не менее чем на n, то она изменилась ровно на n.
Страница: 1
2 >> [Всего задач: 6]