ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки A и B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах AB.

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 103913

Темы:   [ Вписанный угол равен половине центрального ]
[ Вписанный четырехугольник с перпендикулярными диагоналями ]
Сложность: 3
Классы: 8,9

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него.
Доказать, что, если  ∠BAO = ∠DAC,  то диагонали четырёхугольника перпендикулярны.

Прислать комментарий     Решение

Задача 103914

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Найти все равнобедренные треугольники, которые нельзя разрезать на три равнобедренных треугольника с одинаковыми боковыми сторонами.

Прислать комментарий     Решение

Задача 103917

Темы:   [ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Принцип Дирихле (углы и длины) ]
[ Неравенства для углов треугольника ]
Сложность: 4-
Классы: 8,9

Дано, что ни для какой стороны треугольника из проведённых к ней высоты, биссектрисы и медианы нельзя составить треугольник.
Доказать, что один из углов треугольника больше чем 135°.

Прислать комментарий     Решение

Задача 108096

Темы:   [ ГМТ с ненулевой площадью ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

Точки A и B, лежащие на окружности разбивают её на две дуги. Найдите геометрическое место середин всевозможных хорд, концы которых лежат на разных дугах AB.

Прислать комментарий     Решение

Задача 103916

Темы:   [ Средняя линия треугольника ]
[ Ортоцентр и ортотреугольник ]
[ Параллелограмм Вариньона ]
[ Теорема о группировке масс ]
Сложность: 4
Классы: 8,9,10

Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .